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Abstract—Graph algorithms are challenging to parallelize on
manycore architectures due to complex data dependencies and
irregular memory access. We consider the well studied problem
of coloring the vertices of a graph. In many applications it is
important to compute a coloring with few colors in near-linear
time. In parallel, the optimistic (speculative) coloring method by
Gebremedhin and Manne [1] is the preferred approach but it
needs to be modified for manycore architectures. We discuss a
range of implementation issues for this vertex-based optimistic
approach. We also propose a novel edge-based optimistic ap-
proach that has more parallelism and is better suited to GPUs.
We study the performance empirically on two architectures
(Xeon Phi and GPU) and across many data sets (from finite
element problems to social networks). Our implementation uses
the Kokkos library, so it is portable across platforms. We show
that on GPUs, we significantly reduce the number of colors
(geometric mean 4X, but up to 48X) as compared to the widely
used cuSPARSE library. In addition, our edge-based algorithm
is 1.5 times faster on average than cuSPARSE, where it has
speedups up to 139X on a circuit problem. We also show the
effect of the coloring on a conjugate gradient solver using multi-
colored Symmetric Gauss-Seidel method as preconditioner; the
higher coloring quality found by the proposed methods reduces
the overall solve time up to 33% compared to cuSPARSE.
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I. INTRODUCTION

Graph problems arise in many applications, such as data
analysis and computational science and engineering. Graph
algorithms serve as useful tool by themselves for solving
real problems of interest and as good benchmarks for kernel
performance in emerging architectures. They are character-
ized by irregular data access, dynamic data structures, and
non-traditional parallelization patterns with synchronization
bottlenecks dictated by the structure of the graph or by the
algorithm. In this paper, we consider an archetypal graph
problem: graph coloring. Graph coloring is often used to find
independent tasks that can be executed simultaneously. As
minimizing the number of colors is NP-hard, we consider fast
almost-linear time algorithms. Parallel graph coloring presents
an interesting challenge for algorithm developers both in terms
of the performance of the graph kernel itself and in terms of
the impact of the coloring on real problems. While the former
relies on new algorithms and implementations for improving
the performance of the graph algorithm, the latter relies on the
quality of the parallel graph algorithm, typically the number
of colors for graph coloring. In this paper, we are concerned
with both of these aspects of parallel graph coloring.

As architectures evolve from multicore to manycore, the

number of the threads or computing units that parallel algo-
rithms are designed for has increased rapidly. Thus, thread
scalability in parallel algorithms is crucial. The concept of
thread scalability ideally applies to both the performance and
quality aspects of the parallel algorithm, which means the
trade-off of parallel performance and the quality of the result
has to be taken into account in algorithm design. In the context
of graph coloring, we contend that most of the past work,
even work geared toward thread parallelism, is not focused
on thread scalability for hundreds or thousands of threads. We
show that it is possible to achieve both good performance and
high quality with massive parallelism.

Different manycore architectures such as Xeon Phis and
GPUs introduce more complexity in both algorithm design
and implementation. New programming paradigms, such as
Kokkos, OpenACC, and OpenCL, allow us to write imple-
mentations that are portable between different architectures.
These paradigms can form the foundation for performance
portability, enabling one algorithm/code to perform well on
different architectures. We use Kokkos [2] to implement
our algorithms so we can easily evaluate them on different
architectures. We demonstrate that performance portability is
an ideal goal, but in reality one needs different algorithms
on different architectures, as the manycore architectures differ
in their performance characteristics. Our results show which
algorithmic features are important for different architectures
and will allow us to choose features as architectures evolve.

Finally, while the number of colors is a good metric for the
graph coloring algorithm itself, it may or may not translate
into real parallel performance in an actual application using
graph coloring. Therefore, we ask: “What is the real impact
on parallel performance of a kernel due to different numbers
of colors?” We study this with a parallel implementation of a
Symmetric Gauss-Seidel (SGS) preconditioner that uses graph
coloring as a way to improve parallelism. We show the impact
of a good coloring on this SGS kernel with a preconditioned
conjugate gradient solver using a finite-element mini applica-
tion and matrices from the U. of Florida collection [3]. Our
main contributions in this paper follow:

1) A new thread-scalable edge-based coloring algorithm;
2) A study of implementation issues for vertex- and edge-

based methods;
3) Empirical comparisons on a range of graphs on both

Xeon Phi and GPU;
4) Demonstrated impact on solvers using multicolored

Gauss-Seidel preconditioning.



II. BACKGROUND AND RELATED WORK

Let G = (V , E) be an undirected graph, where V and
E correspond to the set of vertices and edges, respectively.
|V | and |E| denote the number of vertices and edges in the
graph. The set of the neighbors of a vertex v is referred as
it adjacency, adj(v). The cardinality of a vertex’s adjacency
is denoted δ(v), and the maximum degree of a graph is
∆ = maxv∈V δ(v). Distance-1 graph coloring C : V → N
is a function that assigns a color to each vertex that satisfies
C(v) 6= C(u) for all edges (u, v) ∈ E. Therefore, distance-1
coloring assigns colors to vertices such that each vertex has a
different color from all of its neighbor vertices. The number
of distinct colors assigned in the coloring problem is referred
to as |C|. The graph coloring problem that minimizes |C| is
NP-Hard and difficult to approximate [4]; therefore, various
heuristics have been studied in the literature.

A vast amount of research has been done on graph
coloring. The 2nd DIMACS Implementation Challenge
(http://dimacs.rutgers.edu/Challenges/) included graph color-
ing. Although the graph coloring is NP-Hard, in practice, sim-
ple greedy heuristics [5] often obtain near optimal solutions.
In this greedy heuristic, for each vertex v, adj(v) is traversed
and v is assigned an available color. In the first-fit version, the
smallest available color is chosen. This can be implemented
in linear O(n+m) time and it gives a ∆ + 1 coloring, i.e., a
coloring with |C| ≤ ∆ + 1. A FORBIDDEN array is typically
used to keep track of the neighbors’ colors. The greedy method
is sensitive to the vertex ordering, so special vertex orderings
(e.g., Largest-First, Smallest-Last) can be used to reduce the
number of colors [6].

The greedy method is inherently sequential and, thus, diffi-
cult to parallelize. Jones and Plassmann [7] proposed a parallel
algorithm (JP) based on independent sets. Each vertex in an
independent set can be colored concurrently (but might be
assigned different colors). Finding independent sets can itself
be parallelized using Luby’s method [8]. The JP algorithm
is often slow as it does more work than the serial greedy
algorithm and may need a large number of synchronization
points. One advantage of the JP method is one can apply
vertex ordering to reduce the number of colors. Hasenplaugh
et al. [9] implemented the JP algorithm for multicore CPU and
proposed a new vertex ordering (largest log-degree first).

Gebremedhin and Manne [1] proposed a multithreaded par-
allel algorithm based on the alternative approach of optimistic
(speculative) coloring. Each thread performs greedy coloring
asynchronously, but there may be conflicts due to two threads
coloring two neighboring vertices at the same time. Therefore,
conflict detection and conflict resolution phases are needed.
The conflict resolution can be done in serial [1] or iteratively
in parallel [10]. We focus on the latter approach as it is known
to be more scalable. The Gebremedhin-Manne (GM) algorithm
has been extended to distributed-memory [10]. The iterative
approach first proposed there was later adopted on shared-
memory systems [11], [12]. A hybrid MPI and OpenMP
implementation was described by Sariyüce et al. [13]. A

variation to reduce the number of kernel launches was recently
proposed by Rokos et al. [14].

Most previous work has focused on multicore machines
with small numbers of cores. Saule and Çatalyürek first eval-
uated optimistic coloring on the Intel MIC (Xeon Phi) [12].
Çatalyürek et al. [11] proposed a highly multithreaded data-
flow algorithm (related to the JP algorithm) for Cray XMT, but
because it relies on hardware support for full-empty bits, it is
not suitable for current GPU. Yet little work has been done on
coloring on GPU. Grosset et al. [15] adapted the GM algorithm
to GPU, but parts of the conflict resolution was done on
CPU. Surprisingly, they found that the number of colors was
actually reduced on GPU. Naumov et al. [16] developed a fast
coloring heuristic that is part of the widely used cuSPARSE
library. This algorithm can be considered a variation of Luby’s
algorithm where all vertices in an independent set are assigned
the same color and this color is never used again. It is simpler
and often faster than the JP algorithm but produces more
colors. Che et al. [17] studied graph coloring on GPU with
variations of the JP algorithm. They observed load imbalance
due to variation in vertex degrees and proposed two strategies
to address this issue.

A. Optimistic Parallel Graph Coloring

Algorithm 1 IPGC: Iterative Parallel Graph Coloring

Require: G = (V,E)
1: C(v)← 0, for all v ∈ V
2: CONF ← V
3: while CONF 6= ∅ do
4: ASSIGNCOLORS (G,C,CONF)
5: CONF ← DETECTCONFLICTS (G,C,CONF)
6: return C

Algorithm 2 IPGCAC: IPGC - ASSIGNCOLORS

Require: G = (V,E), C,CONF
1: Allocate private FORBIDDEN with size max degree.
2: for v ∈ CONF in parallel do
3: FORBIDDEN ← false
4: FORBIDDEN(C(u))← true for u ∈ adj(v)
5: C(v) ← min {i > 0|FORBIDDEN(i) = false}
6: return C

Algorithm 3 IPGCDC: IPGC- DETECTCONFLICTS

Require: G = (V,E), C,CONF
1: NEWCONF ← ∅
2: for v ∈ CONF in parallel do
3: for u ∈ adj(v) do
4: if C(u) = C(v) and u < v then
5: ATOMIC NEWCONF ← NEWCONF ∪ v
6: return NEWCONF

Algorithms 1, 2, and 3 describe iterative optimistic (spec-
ulative) parallel graph coloring for shared-memory [11], [12],
which is based on [1]. The vertices are colored speculatively
within ASSIGNCOLORS. Then DETECTCONFLICTS detects



conflicts that occurs due to race conditions. The conflicted
vertices are recolored in the next iteration, and the algorithm
terminates when there are no conflicts. We refer to this
algorithm as IPGC; our implementation uses improvements
from [11] where initialization of FORBIDDEN is moved outside
of the loop. IPGC can be classified as a vertex-based parallel
graph coloring algorithm, since the coloring process of a
single vertex is always handled by a single thread. To our
knowledge, all existing parallel graph coloring algorithms are
vertex-based algorithms. Note that each thread has its own
private FORBIDDEN in algorithm 2. FORBIDDEN must be large
enough for all possible colors, so it typically has size ∆.
However, allocating such a private array for each thread is
problematic in massively threaded architectures.

B. Kokkos Library

Kokkos [2] is a C++ library that provides an abstract thread
parallel programming environment and enables performance
portability for common multi- and many-core architectures. It
provides a single programming interface but enables different
optimizations for backends such as OpenMP and CUDA.
We used only a small subset of Kokkos’ features, mainly
parallel for, parallel scan, atomics, and views (arrays). Using
Kokkos allows us to run the same code on Xeon Phi and GPU
just with different compile options.

III. ALGORITHMS

A. Vertex-Based Graph Coloring

Although the vertex-based iterative coloring algorithm is
quite simple, several implementation details are often ignored.
We present two key optimizations to these algorithms. First,
we improve how FORBIDDEN arrays are handled. This opti-
mization is aimed at enabling the VB algorithms run on an
architectures with lots of threads. Second, we eliminate the
FORBIDDEN array altogether and change how it is represented
in memory in order to be scalable in GPUs.

1) Fixed size FORBIDDEN array: The simplest way to
eliminate the need for private FORBIDDEN arrays in each
thread is to just try each possible color in increasing order until
a valid color is found. This would require O(δ(v)2) work for
each vertex v, so the total complexity is O(∆|E|) for the most
expensive round. Instead, a better trade-off between memory
and run-time is to keep a small FORBIDDEN array of fixed
size (MAXFORBID) and to traverse the adjacency list of some
vertices more than once. For graphs requiring only a small
number of colors, it is sufficient to traverse the adjacency list
of the vertices once, but those needing more colors will require
multiple passes of the adjacency list for some vertices. The
resulting ASSIGNCOLORS function is listed in Algorithm 4
(called VB hereafter).

Algorithm 4 allocates arrays with size MAXFORBID in each
thread. We introduce the idea of COLORRANGE for handling
more colors than MAXFORBID. Only the colors within a
COLORRANGE are considered in one pass. If a color cannot
be found in this range, the adjacency list is iterated over again
with the next COLORRANGE. FORBIDCOLOR forbids a color

Algorithm 4 VB: IPGC- ASSIGNCOLORS with Fixed Forbbiden
Array

Require: G = (V,E), C,CONF
1: Allocate private FORBIDDEN with size MAXFORBID
2: for v ∈ CONF in parallel do
3: OFFSET ← 0
4: while v is not colored do
5: FORBIDDEN ← false
6: COLORRANGE ← [OFFSET,OFFSET+MAXFORBID)
7: for u ∈ adj(v) and C(u) ∈ COLORRANGE do
8: FORBIDDEN ← FORBIDCOLOR ( FORBIDDEN,

C(u), OFFSET)
9: C(v)← SETCOLOR (FORBIDDEN, OFFSET)

10: OFFSET ← OFFSET +MAXFORBID
11: return C

(by setting FORBIDDEN(C(u)− OFFSET) to true), only if the
neighbor’s color is within the current color range. At the end
of a pass, SETCOLOR picks the smallest available color in
FORBIDDEN and shifts it by the OFFSET. In the rest of the
paper, we use MAXFORBID = 64, as it balanced the memory
requirements and work for both GPUs and Xeon Phi’s.

2) Bitwise representation of FORBIDDEN: Even a thread-
private array of size 64 is sometimes too big to be handled in
registers and gets allocated in the local memory on GPUs.
Frequent accesses to this array may cause VB to suffer
from memory stalls. To prevent this, we introduce a bitwise
representation of FORBIDDEN using a single (long) integer
instead of an array. A 0 (1) bit in FORBIDDEN corresponds
to an available (forbidden) color. An integer FORBIDDEN
can be stored on thread registers on GPUs, minimizing the
memory latency penalty. This requires slight changes to FOR-
BIDCOLOR and SETCOLOR in Algorithm 4. When a neighbor
with a color in current range is encountered, FORBIDCOLOR
sets the bit with index C(v) − OFFSET to one. Once the
traversal is completed, SETCOLOR picks a color by finding
the first available bit in FORBIDDEN. SETCOLOR can be
done in O(1) using BITWISEAND and two’s complements of
FORBIDDEN. We will refer to this algorithm, using a long
integer to represent FORBIDDEN, as VB BIT.

B. Edge-Based Graph Coloring

Vertex-based algorithms have several disadvantages on
SIMD architectures (GPUs). For example, the thread that
handles the vertex with the highest degree might become
the bottleneck, and the other threads within the same warp
stall and wait for the completion of this thread. This is
especially problematic for graphs with large variation in vertex
degrees. In addition, neighbor list traversals are not coalesced.
Such issues can be avoided with edge-based algorithms where
threads own edges, rather than vertices.

Algorithm 5 shows a simple edge-based coloring approach.
In this approach, we assume that VFORBIDDEN(v) holds
the list of the forbidden colors for vertex v, initialized to
∅. ASSIGNCOLORS goes over all the vertices and picks the
smallest available color for v based on VFORBIDDEN(v).
DETECTCONFLICTS loops over all edges and checks if the



Algorithm 5 EB: Edge-Based Graph Coloring

Require: G = (V,E)
1: SET VFORBIDDEN(v) = ∅ for all v ∈ V
2: while there exists a v ∈ V that is not colored do
3: C ← ASSIGNCOLORS(V,VFORBIDDEN)
4: C ← DETECTCONFLICTS(E,C)
5: VFORBIDDEN ← FORBIDCOLORS(E,C,VFORBIDDEN)
6: return C

two endpoints of an edge have the same color. If so, it marks
one endpoint with a conflict. Then, FORBIDCOLORS goes over
all edges, and atomically updates VFORBIDDEN of vertices
based on the colors of their neighbors.

Figure 1 gives an example workflow of the simple edge-
based graph coloring algorithm for a simple graph. It shows
three rounds of edge-based coloring with two threads. The
rounds are shown as columns and the functions within a
round are shown as rows. The vertices and edges processed by
different threads are differentiated by orange and purple lines.
Initially, all vertices have no colors, and their VFORBIDDEN
is ∅. In the first round, ASSIGNCOLORS colors all vertices red
(first fit). Next, DETECTCONFLICTS goes over all the edges
and resets the color of the vertex with the smaller index in case
of a conflict. For example, the color of v1 is reset by the first
thread because of the conflict (v1, v2). Then FORBIDCOLORS
loops over the edges, and each thread writes the color of the
vertex at one end to VFORBIDDEN of the other end. This
write operation might require atomic operations based on the
data structure used for VFORBIDDEN. For example, in the
first round, the first thread writes red to VFORBIDDEN of v1
because of the edge (v1, v2). FORBIDCOLORS does nothing
for the edges where both ends have no color such as (v1, v3).
Further rounds are also shown in the figure for clarity.

Lemma 1. Algorithm 5 terminates with a correct coloring.

Proof: We show correctness in two steps. First, the
coloring must be correct if the algorithm terminates, since
DETECTCONFLICTS resets the color of any conflicted vertex.
Second, the number of colored vertices strictly increases in
each round. As creation of the forbidden colors and assignment
of actual colors happen independently, color assignments in
prior rounds cannot cause conflicts in later rounds. Conflicts
may arise only between vertices that are colored in the same
round. However, even if all the vertices that are colored in
the same round become conflicted, DETECTCONFLICTS leaves
at least one vertex with the correct color, as a result of the
index-based tie-breaking when conflicts arise irrespective of
race conditions. Therefore, the algorithm will terminate with
a correct coloring.

Lemma 2. Algorithm 5 will result in ∆ + 1 coloring.

Proof: We claim that for any vertex v, the cardinality
of VFORBIDDEN(v) can be at most δ(v). As long as each
edge incident on v contributes only one single color to
VFORBIDDEN(v), ASSIGNCOLORS for a vertex will pick a
color that is at most δ(v) + 1. In this algorithm, no more

than one color can be forbidden because of the same edge as
FORBIDCOLORS sets VFORBIDDEN(v) of one of the incident
vertices with the color of the other. Furthermore, colors do
not change in FORBIDCOLORS, eliminating any possibility of
multiple colors for a vertex due to race conditions. Thus, each
vertex v needs at most δ(v)+1 colors, giving a ∆+1 coloring.

While, we use Algorithm 5 and Figure 1 to show the
simple edge-based graph coloring algorithm, this method does
poorly in practice. We do not show this method in the rest
of the paper, but instead modify it with three sophisticated
optimizations. The three issues with the simple method are
given below.

Memory: Algorithm 5 requires one FORBIDDEN array per
vertex. To reduce memory usage, we propose the use of the
color sets (CS) as a counter to indicate the COLORRANGE
(Section III-B1).

Convergence issues: In Figure 1, even when there are no
race conditions, the algorithm ends up with conflicts because
VFORBIDDEN is created with partial information based on
edges with at least one colored vertex. This results in conflicts
when an edge has both vertices uncolored, which causes the
algorithm to need too many coloring rounds to converge. We
introduce an optimization called tentative coloring to avoid
such situations (Section III-B2).

High number of edge traversals: There are far more edges
than vertices in a typical graph. This makes the traversals in
an edge-base algorithm much more expensive than those in a
vertex-based one. As a result, maintaining an edge work list
and filtering them become crucial for obtaining performance
(Section III-B3).

1) Use of Color Set: We reduce the memory requirement
to O(|V |) by using COLORRANGE and bit manipulations
similar to VB BIT. COLORRANGE is thread-private in the
VB algorithm; therefore, it is dynamically created and incre-
mented during the neighbor traversals. This is not possible for
the edge-based algorithm, as gathering forbidden colors and
assigning colors are done in separate phases. We introduce
a static counter per vertex, known as a color set CS(v), to
indicate the COLORRANGE of the vertex v. In each round,
we consider only those neighbors that are in the same COL-
ORRANGE to set VFORBIDDEN(v). If no available colors
are found at the end of the round, CS(v) is incremented,
and colors from the next color range are sought in the next
round. Such static CS(v) storage also allows us to avoid
conversions to bits from colors. Throughout the algorithm, a
32 bit integer C(v) is used to represent at most 32 colors.
More colors are represented using CS(v). At the end of the
coloring, they are converted back to the actual color using
CS(v)× 32 + log2(C(v)).

Algorithms 6 and 7 show the modified FORBIDCOLORS and
ASSIGNCOLORS. In FORBIDCOLORS, edges are processed
only if the connected vertices have the same CS, one vertex
is colored, and the other is not. Then, the color of the one
end is added to the VFORBIDDEN of the other vertex using
a BITWISEOR operation (denoted with ‘|’ in the algorithms).



Fig. 1: Workflow of a Simple Edge-Based Graph Coloring Algorithm. The functions are given as rows, while the iterations are given as the
columns of the figure. The vertices and edges that are lined with orange and purple are those processed by thread-1 and thread-2, respectively.
Note that ASSIGNCOLORS loops over the vertices, while DETECTCONFLICTS and FORBIDCOLORS loop over the edges.

Algorithm 6 EB: FORBIDCOLORS

Require: E, CS, C, VFORBIDDEN
1: for (u, v) ∈ E and CS(u) = CS(v) in parallel do
2: if u is colored, v is not colored then
3: ATOMIC VFORBIDDEN(v)← VFORBIDDEN(v) | C(u)
4: if v is colored, u is not colored then
5: ATOMIC VFORBIDDEN(u)← VFORBIDDEN(u) | C(v)

Algorithm 7 EB: ASSIGNCOLORS

Require: V,CS,C,VFORBIDDEN
1: for v ∈ V and C(v) = 0 in parallel do
2: if VFORBIDDEN(v) has bits set to zero then
3: C(v)← FIRSTAVAILABLEBIT (VFORBIDDEN(v))
4: else
5: CS(v)← CS(v) + 1
6: VFORBIDDEN(v)← 0

In ASSIGNCOLORS, the first available bit of VFORBIDDEN is
found in O(1) as in VB BIT.

2) Improving Convergence: We propose tentative coloring
to reduce the number of rounds of the edge-based algorithm.
In this step, we process edges with two uncolored vertices,
and force them to let each other know about the other’s
tentative color. We give the details of TENTATIVECOLOR in
Algorithm 8, which is called right after FORBIDCOLORS in
Algorithm 5 in the modified algorithm.

TENTATIVECOLOR iterates over the edges, and processes
only those having both vertices with tentative colors or no
colors. Here, tentative colors refer to the colors given in this
step. Tentative colors are marked by using the negative of the
intended color as a flag. (With this change, a 32 bit integer
can now represent 31 different colors, and 1st bit is used as
tentative color flag.) In addition, we introduce TVFORBIDDEN
here, which has the same structure as VFORBIDDEN, but holds
the forbidden tentative colors, to avoid mixing tentative and

Algorithm 8 EB: TENTATIVECOLOR

Require: E,CS,C,VFORBIDDEN, TVFORBIDDEN
1: for (u, v) ∈ E and CS(u) = CS(v) in parallel do
2: if neither u nor v are colored then
3: ALLFORBID ← VFORBIDDEN(v) | TVFORBIDDEN(v)
4: C(v)← −FIRSTAVAILABLEBIT(ALLFORBID)
5: ATOMIC TVFORBIDDEN(u)← TVFORBIDDEN(u) | −C(v)
6: if u and v are tentatively colored and C(u) = C(v) then
7: ALLFORBID ← VFORBIDDEN(v) | TVFORBIDDEN(v)
8: C(v)← −FIRSTAVAILABLEBIT(ALLFORBID)
9: ATOMIC TVFORBIDDEN(u)← TVFORBIDDEN(u) | −C(v)

10: if u is tentatively colored, v is not colored then
11: ATOMIC TVFORBIDDEN(u)← TVFORBIDDEN(u) | −C(v)
12: if u is tentatively colored, v is not colored then
13: ATOMIC TVFORBIDDEN(u)← TVFORBIDDEN(u) | −C(v)

assigned colors. When processing an edge (u, v), there are
various scenarios in TENTATIVECOLOR:
1. If neither u nor v is colored, we pick a tentative color
for v having larger index (index comparison is omitted
in Algorithm 8 for simplicity) using VFORBIDDEN(v) and
TVFORBIDDEN(v), and add the tentative color of v to
TVFORBIDDEN(u).
2. If u is tentatively colored, and v is not colored yet, we add
the tentative color of u to TVFORBIDDEN(v) and vice versa.
3. If both u and v are tentatively colored, we check for
conflicts. In case of conflict, the vertex with smaller in-
dex is recolored and this new tentative color is added to
TVFORBIDDEN of the other vertex.

With tentative coloring, we also change the ASSIGNCOLOR
to use TVFORBIDDEN as well as VFORBIDDEN as shown in
Algorithm 9. In the updated ASSIGNCOLOR, threads traverse
vertices. If the vertex is tentatively colored, it removes the
tentative flag by negating the color. Otherwise, it picks the
first available color using VFORBIDDEN and TVFORBIDDEN.
If all of the bits in ALLFORBID are 1, all the neighbors have



Algorithm 9 EB: ASSIGNCOLOR using Tentative Colors

Require: V,CS,C,VFORBIDDEN, TVFORBIDDEN
1: for v ∈ V in parallel do
2: if C(v) is tentatively colored then
3: C(v)← −C(v)
4: if v is not colored then
5: ALLFORBID ← VFORBIDDEN(v) | TVFORBIDDEN(v)
6: if ALLFORBID has bits set to zero then
7: C(v)← FIRSTAVAILABLEBIT(ALLFORBID)
8: else
9: if VFORBIDDEN(v) has bits set to zero then

10: CS(v)← CS(v) + 1
11: VFORBIDDEN(v)← 0

used all the colors in the CS(v). In such cases, CS(v) is
incremented and an available color is searched within new
CS(v) during the next round. It is very important that
we do not increase the number of colors and stay within
δ + 1 upper bound with the addition of tentative coloring.
This upper bound is satisfied as long as only one color for
each neighbor is added to VFORBIDDEN or TVFORBIDDEN.
TVFORBIDDEN(v) might include the tentative color of a
vertex u, which might get recolored in another CS(v) because
of a conflict. In this case, more than one color might be
forbidden because of u, potentially causing a violation of
the δ + 1 upper bound, as v might not know about the
available color in a lower CS(v). We solve this problem
by incrementing CS based only on the finalized colors of
VFORBIDDEN and not on TVFORBIDDEN (Algorithm 9). This
guarantees that only one color is taken into account for each
neighbor, thus, the algorithm still satisfies δ+ 1 upper bound.

3) Reducing the edge-traversals in each iteration: All func-
tions used in EB except ASSIGNCOLOR perform traversals on
E. It is possible to reduce the size of the E throughout the exe-
cution. We introduce a new CREATENEWEDGELIST function
after DETECTCONFLICT in Algorithm 5 (not shown because
of space considerations), to reduce the size of EdgeList as
the algorithm progresses. EdgeList is initially set to E, and
in each round CREATENEWEDGELIST removes three types of
edges from this set:

1. Edges with two colored vertices: The vertices that remain
colored after DETECTCONFLICT will not have further conflicts
thanks to FORBIDCOLORS, and their colors will be final. Thus,
such edges can be removed from EdgeList.
2. An edge that has been seen by FORBIDCOLORS with one
end point colored: Similar to the previous case, a vertex that
survived with a color after DETECTCONFLICT is guaranteed
not to have conflicts. Therefore, such edges will not provide
any new information and can be removed from EdgeList.
3. Edges in which CS of its colored vertex is lower than the
color set of the uncolored vertex. These are edges with one
colored and one uncolored end; however, such edges might
never be processed by FORBIDCOLORS, since color set of the
uncolored vertex is higher than the colored one. In such cases,
these edges will not give any new forbidden color information;
therefore, they can be removed from EdgeList.

This proposed edge-based algorithm will be referred as EB
for the rest of the paper. EB follows Algorithm 5 with the
three optimizations above and uses 32 bit integers to store
colors and forbidden colors.

IV. IMPLEMENTATION ISSUES

We describe choices of implementation and data structures
to consider when designing multithreaded graph algorithms.

A. Maintaining the Worklist

Both vertex-based and edge-based algorithms maintain a
dynamic conflict list (worklist), an array, in order to reduce
the amount of work done in later rounds. Maintaining such
dynamic arrays is challenging on highly multithreaded plat-
forms. One approach is to use atomic operations to maintain
the length of the list. Here, a global counter is incremented
with atomic fetch and add by each thread in order to obtain
the position in the array to which it writes a vertex (or edge)
index. We refer to algorithms using this method as ATOMIC.
Another approach is to use parallel prefix sum (PPS). Here,
conflicted vertices (or edges) are marked with binary numbers
(1 for conflicts, 0 otherwise), and a parallel prefix sum is used
to get the position to write in the new worklist. ATOMIC
can suffer from the critical region access when the accesses
are frequent, while PPS requires two sweeps of the array. In
addition, ATOMIC might result in a scattered worklist where
consecutive vertices end up far apart, while PPS preserves
the order of the vertices in the worklist, which might result
in better cache usage in MIC, and better coalesced accesses
on GPU. We implemented both versions for both vertex-
and edge-based algorithms. Experiments showed the impact is
negligible on vertex-based algorithms and significant on edge-
based algorithms. We compare both options for the edge-based
algorithm in Section V.

B. Edge Filtering

In the vertex-based algorithms, due to the limited size of
the forbidden array, the neighbors of a vertex v might be
traversed multiple times. In each traversal, only the colors in a
color range are considered. Therefore, a neighbor vertex that
has been considered in a previous traversal is not needed in
further traversals with different color ranges. Thus, one can
do an edge filtering for the proposed vertex-based algorithms.
During each traversal, we place the considered neighbors to the
front (or end) of the adjacency list, and skip such vertices in
later traversals. These swaps require extra memory operations;
however, they are helpful for graphs with high numbers of
colors. In the experiments, we report the results with this edge-
filtering (EF) optimization in vertex-based algorithms.

C. Chunk Size for Vertices

It is often difficult to leverage SIMD instructions (e.g.
GPUs) for graph coloring purposes [14]. Because of the SIMD
nature of GPUs, the algorithms might incur many conflicts due
to coloring decisions for neighboring vertices made within the
same clock cycle. To prevent such cases, we introduce the



notion of chunk sizes, where each thread is assigned a chunk of
consecutive vertices. This has no effect on multi-core and some
many-core architectures where threads are already assigned
consecutive chunks. On the other hand, this update harms the
coalesced memory accesses in GPUs, but reduces the number
of conflicts, and therefore the number of the rounds in the
algorithm. In initial experiments, we have tested our dataset
with different chunk sizes on GPUs. Over all the datasets,
using chunk size of 8 reduces the number of rounds by 36%
and the execution time by 6%. As expected, it increases the
cost of a single iteration. The reduction in time is greater on
graphs where the vertices have uniform degree, but run time
increases on more irregular graphs. We used a chunk size of
8 for vertex-based algorithms on GPUs in Section V.

D. Improved Conflict Resolution

When a color conflict is discovered, only one of the vertices
corresponding to that edge needs to be recolored. We used the
simple rule to recolor the lower numbered vertex. One could
also use a random number for each vertex but we observed this
made little difference in practice. A more interesting strategy
is to recolor the vertex of lower degree, in order to reduce
the risk of new conflicts due to recoloring. Also, in serial,
the Largest-First and Smallest-Last ordering strategies have
proven effective for reducing the number of colors. However,
querying the degree information requires extra memory costs.
Moreover, obtaining this information can be expensive in edge-
based algorithms. In our experiments, we tested this scheme on
our vertex-based algorithms. For most of the graphs, the gain
did not amortize the cost of extra memory access. However, it
had significant improvements on the highly irregular graphs.
For example, in the kron g500logn21 graph from our dataset,
it reduced the execution time on GPUs up to 2.5 times.
Nevertheless, we omit this feature in the experiments as it
did not help most of the graphs in our dataset.

V. EXPERIMENTS

We evaluate the performance of the proposed coloring
algorithms on two different manycore architectures: GPUs and
Intel Xeon Phi (MIC). We use single nodes of the clusters
Shannon (GPU) and Compton (Xeon Phi) at Sandia. A single
node in Shannon has two NVIDIA Tesla K20X GPUs with
compute capability 3.5 and 6 GB of global memory. GPU
cards have 2688 cores with peak memory bandwidth 250 GB/s.
Each node on Compton has a Xeon Phi MIC card with 57
cores and 4 hyperthreads at 1.1 GHz with 6 GB memory. As
all algorithms had their peak performance with 228 threads,
each algorithm is run with fully utilized MIC threads for the
experiments. The proposed algorithms are implemented using
the Kokkos Library, and compiled using the version within the
Trilinos 12.2 release, with Cuda 7.5.7 and icc 15.0.2.

For the experiments, we used graphs from the UFL Sparse
Matrix Collection [3]. The graphs and their properties are
listed in Table I. We used no reordering. We evaluate the
performance of the coloring algorithms in terms of execution
time, as well as the number of colors found by the algorithms.

TABLE I: The graphs used in the experiments. In a preprocessing
step, each graph is symmetrized, and self edges are removed. The
reported number of edges corresponds to the number of edges after
this preprocessing. δavg is the average degree in the graph ( |E|

|V | ). The
last column shows the ratio of the standard deviation of the vertex
degrees to the average degree, as a measure of the regularity of the
graph. Graphs in which vertices have similar degrees have lower
ratios (regular graphs), while those with highly varying degrees have
larger ratios (irregular graphs).

Graph Class |V| |E| δavg
std(δ(v))
δavg

circuit5M Circuit Problem 5.5M 53.9M 9.71 139.72
Audikw 1 PDE Problem 0.9M 76.7M 81.28 0.52
Bump 2911 PDE Problem 2.9M 124.8M 42.87 0.16
Queen 4147 PDE Problem 4.1M 325.3M 78.45 0.08
kron g500-logn21 Artifical Network 2.0M 182.1M 86.82 8.70
indochina-2004 Web Crawl 47.4M 302.0M 40.72 61.35
hollywood-2009 Social Network 1.1M 112.8M 98.91 2.75
rgg n 2 24 s0 RandomGeometric 16.8M 265.1M 15.80 0.25
soc-LiveJournal1 Social Network 4.8M 85.7M 17.68 2.94
europe osm Road Network 50.9M 108.1M 2.12 0.23

A. Graph Coloring Performance

In Figure 2, we present the execution time and the number
of rounds of the coloring algorithms for seven representative
graphs from our dataset. (Other graphs had similar results and
are not shown here to save space.) The reported values denote
averages of 5 and 10 runs for each graph on GPU and MIC,
respectively. We have three main algorithms: two vertex-based
methods (VB, VB BIT), and an edge-based algorithm (EB).
Vertex-based algorithms have two variants each: using edge-
filtering (EF) or not. The edge-based algorithm also has two
variants: ATOMIC and PPS. We compare our implementations
with the coloring method in cuSPARSE on GPUs, and IPGC
implementation by [12] on MICs.

Figure 2 shows that EB usually outperforms other algo-
rithms on GPUs, while its performance is slightly worse than
others on MIC. Since MIC threads have more coarse-grain
parallelism, the architecture is more “forgiving” to thread load-
imbalances than GPUs, which have finer-grain parallelism
(SIMD). Moreover, EB uses atomic operations, which are
faster on GPU. However, edge-based algorithms still have
advantage over the vertex-based ones on highly irregular
graphs. We expect the architectures to be more sensitive to
the thread load-imbalances with increasing number of threads,
which is likely to increase the importance of the edge-based
algorithms.

The number of rounds with EB is significantly higher than
with the vertex-based algorithms But since the execution time
of a round is much lower for EB, it still obtains significant
speed-ups on GPU (up to 86X) w.r.t. vertex-based algorithms,
especially on irregular graphs. EB with PPS usually performs
better on both architectures with a few exceptions. O(|E|)
atomic operations by many threads create contention and
may become quite expensive. In addition, atomic operations
randomly distributes the consecutive edges, harming coalesced
memory access on GPUs and caching on MICs. However,
ATOMIC reduces the number of rounds on GPUs. Since edges
are scattered, edges that are connected to the same source
vertex are processed by different GPU warps in the tentative
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Fig. 2: Experiment results for seven graphs. Each row corresponds
to a specific matrix, and left and right columns correspond to GPU
and MIC experiments, respectively. Note the y axis is log scaled, has
different ranges for different matrices, and it is given in milliseconds
for the sake for presentation. The numbers inside the bars correspond
to the execution time in miliseconds. The numbers on top of the bars
show the number of rounds each algorithm takes.

coloring. This significantly reduces the number of conflicts,
and, thus, the number of rounds. However, this reduction
usually does not amortize the cost of the atomic operations and
non-coalesced edge access, except for europe osm, in which
the number of rounds is reduced dramatically.

In general, vertex-based algorithms have better performance
on MICs, except for europe osm. This graph has a very
low δ and std(δ(v)). Therefore, threads do not suffer from
load-imbalances and have better coalesced accesses, which
allows the vertex-based algorithms to utilize the GPU bet-
ter. Similarly, vertex-based algorithms are slightly better on

rgg n 2 24 s0 on GPUs. Even though this graph has higher
δ, it is a very regular graph. Vertices have similar number of
neighbors, which eliminates the thread-divergence and load-
imbalance of vertex-based algorithms.

Among the vertex-based algorithms, VB BIT is slightly
better on GPUs, while VB has better performance on MIC.
The forbidden array in VB is stored on a slow local memory
on GPUs, and avoiding those accesses with VB BIT improves
performance up to 13.8 times (indochina-2004 ATOMIC EF).
The cost of the extra bit operations is amortized by avoid-
ing local memory accesses. On the other hand, storage of
FORBIDDEN can take advantage of caching on MIC, reducing
the cost of the accesses to the array. As a result, the extra
bit operations in VB BIT become more expensive than the
accesses to the arrays, making VB BIT slower w.r.t. VB.

EF usually helps on graphs for which the number of
colors is high (higher than 64, the fixed forbidden size) e.g.
hollywood-2009, indochina-2004 and kron-g500-logn21. For
example, edge-filtering for indochina-2004 on GPUs reduced
one instance’s execution time from 690 seconds to 27 seconds.
EF reduces the thread-divergence in these graphs. In addition,
since it reduces the time that a greedy coloring decision takes
(making the color information available faster), it helps to
reduce the number of conflicts in each round, and reduce
the number of rounds. However, the extra memory read and
writes have a negative impact for the graphs with fewer colors.
Moreover, on MIC, edge-filtering improvements are slightly
smaller than those on GPUs. Since thread-divergence is not
an issue on MIC, EF helped to reduce only the number of
rounds, which amortizes the cost of extra memory overhead
only in a few instances (e.g., kron-g500-logn21).

As expected, cuSPARSE is usually much faster than the
vertex-based algorithms on GPUs, but uses many more (about
4X) colors. EB outperforms cuSPARSE on irregular graphs;
however, its run time is slightly worse on more regular ones.

IPGC usually obtains similar performances to the vertex-
based algorithms, and it does not run out of memory on MIC
for our dataset. However, the memory is likely to be a problem
for IPGC as the number of threads increases. Moreover, VB
often had lower execution time than IPGC. We believe that the
use of the smaller memory made the algorithm more cache-
friendly, improved the performance over IPGC in most of the
graphs. However, IPGC is significantly faster on indochina-
2004, in which the number of colors found is roughly 7K,
which causes 100 times more edge-list traversals for VB.

In Table II, we report the average number of colors found
by the algorithms with multiple runs. Only single variants are
shown for vertex- and edge-based algorithms, as results do not
change significantly with other variants. The fewest colors are
usually found by EB, which, on average, has 4.12 times fewer
colors than cuSPARSE and 8% fewer than VB.

Table III shows the geometric mean of the overall coloring
execution time of the coloring algorithms. EB with PPS
has the best execution time on GPU: 1.49 times faster than
cuSPARSE. On the other hand, VB obtains the overall best
execution time on MIC: 10% faster than IPGC. Figure 3



TABLE II: The average number of colors found

GPU GPU MIC
cuSPARSE VB EB IPGC VB EB

audikw 1 160.0 56.2 50.4 60.4 60.9 51.9
Bump 2911 96.0 33.4 32.0 38.7 39.0 36.3
circuit5M 341.0 9.4 7.0 7.0 8.0 6.1
hollywood-2009 2317.0 2209.0 2209.0 2209.0 2211.3 2209.0
indochina-2004 7030.0 6849.4 6850.2 6849.0 6848.0 6849.7
kron g500-logn21 3465.0 832.2 645.6 799.8 825.8 632.9
Queen 4147 128.0 49.8 44.0 54.0 51.0 48.4
soc-LiveJournal1 557.0 344.6 330.4 332.3 332.0 330.5
rgg n 2 24 s0 64.0 24.8 24.8 24.0 23.0 25.0
europe osm 32.0 6.0 6.0 5.0 5.0 5.0
GEOMEAN: 312.37 82.09 75.84 88.61 89.14 75.28

TABLE III: Geometric mean of execution times (seconds)

cuSPARSE VB VB EF VBBIT VBBIT EF EB ATOMIC EB PPS
GPU: 0.79 3.38 2.96 2.84 1.92 0.73 0.53

IPGC VB VB EF VBBIT VBBIT EF EB ATOMIC EB PPS
MIC 0.42 0.38 0.66 0.64 0.53 5.64 1.78

shows the performance profile of the algorithms on GPUs
and MICs. The best performance is measured among the
reported variants of the algorithms. As seen in Figure 3a, EB,
cuSPARSE and VB BIT have best performance for 5, 4 and 1
graphs, respectively. cuSPARSE and EB have the overall best
performance, but EB obtains far fewer colors than cuSPARSE.
On MIC, VB, IPGC, and VB BIT obtain the best performance
on 7, 2 and 1 graphs, respectively.

B. Scaling of coloring

Figure 4 presents the scalability of the algorithms in terms
of the size of the graph. We perform this experiment using
RMAT graphs from the Graph500 benchmark (a = .57, b =
c = .19); see Table IV. Figure 4 shows the execution time per
million edges. On GPU, we observe all algorithms except VB
have better than linear scaling with the increasing size of the
graph. For these highly irregular graphs, EF greatly benefits
the vertex-based algorithms. The best performance is achieved
by EB. On the other hand, on MIC (Figure 4b), the algorithms
show less than linear scaling. One interesting result is that
EB is much faster than the vertex-based algorithms, even on
MIC. Because RMAT graphs have much greater irregularity
than the graphs in Table I, the vertex-based algorithms suffer
from thread load-imbalances, even on MIC.
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Fig. 3: Performance profile of the algorithms’ execution time. Point
(x, y) indicates that in y graph instances, the algorithm obtains a
performance that is at most x times worse than the best run time.

TABLE IV: The RMAT graphs used in the scaling experiments

Graph |V| |E| δavg
std(δ(v))
δavg

rmat 20 1M 8.4M 8.00 754.31
rmat 22 4.2M 33.6M 8.00 1293.60
rmat 24 16.8M 134.2M 8.00 2200.37
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C. Application: Multicolor Gauss-Seidel

To show the importance of coloring on a real application,
we solve linear systems Ax = b using the Symmetric Gauss-
Seidel (SGS) method as preconditioner for the conjugate gra-
dient (CG) method. The Gauss-Seidel method is the stationary
iteration (L + D)xk+1 = Uxk [18], where L,D, and U
are the lower, diagonal, and upper parts of the matrix A,
respectively. The algorithm traverses rows in a certain (e.g.,
natural) order, and within the execution, x’s values are updated
dynamically, and used in the calculation of the later x elements
corresponding to other rows. Therefore, old values of x are
multiplied with the upper diagonal, while the updated x values
are multiplied with the lower diagonal. These dependencies
make the algorithm difficult to parallelize. Graph coloring
can be used to find sets of independent rows that can be
processed simultaneously. Fewer colors correspond to fewer
synchronization points in SGS, and more parallelism between
synchronization points. This changes the traversal order, and
this matrix reordering may impact the convergence rate [18].

We implemented multicolored SGS and preconditioned CG
(PCG) using Kokkos and used the coloring from cuSPARSE
and EB on various graphs. We used the FENL example
from Trilinos with various problem sizes. FENL solves a
nonlinear advection-diffusion equation, discretized using linear
finite elements. The resulting nonlinear system is solved with
Newton’s method, which at each iteration solves a linear
system. The number of colors found, the number of iterations
that CG and PCG took, their overall execution times, and the
preconditioning time are shown in Table V.

Unpreconditioned CG did not complete in 12 hours for
Queen 4147, Bump 2911, and audikw 1. For the FENL prob-
lems, using PCG with SGS reduced the number of iterations
up to 2.88 times, and overall execution times up to 39%. EB
usually finds roughly 4 times fewer colors than cuSPARSE in
these problems. This difference reduces the overall execution
time by 26% to 7%, and preconditioning time (the actual



TABLE V: The overall execution time and SGS preconditioning
time (in seconds) of (P)CG Solver with different coloring methods.

Matrix Algorithm # Colors # Iterations SGS Time PCG Time

Fenl 50
EB 17.2 85 0.25 0.54
cuSPARSE 64 76 0.46 0.73
CG 219 0.73

Fenl 100
EB 18 162 2.38 5.84
cuSPARSE 64 148 3.07 6.24
CG 425 8.94

Fenl 180
EB 18 266 22.70 55.90
cuSPARSE 74 263 28.40 61.20
CG 736 91

G3 Circuit
EB 5 1, 897 6.84 12.17
cuSPARSE 32 1, 701 13.3 18.05
CG 16, 855 42.30

audikw 1 EB 50 2, 780 136.44 337.52
cuSPARSE 160 2, 708 179.75 375.64

Bump 2911 EB 33 6, 110 411.96 1107.11
cuSPARSE 96 5, 990 507.05 1188.56

Queen 4147 EB 44 13, 504 2376.45 6575.64
cuSPARSE 128 13, 789 2788.34 7076.42

parallelized region with coloring) by 56% to 20% w.r.t. cuS-
PARSE. There is a small increase in the number of iterations
when using a better coloring (fewer colors). The execution
time difference is larger on the smaller problems, since their
cost of synchronization is more visible.

On G3 Circuit, SGS reduces the number of iterations up
to 90%, and overall execution time up to 71% w.r.t. CG. For
this matrix, cuSPARSE finds 6.4 times more colors than EB,
making it 94% and 48% slower on preconditioning and overall
time, respectively. Similarly, on larger matrices (audikw 1,
Bump 2911 and Queen 4147) EB reduces preconditioning
time from 15-25%, and overall solve time 7-10% w.r.t. cuS-
PARSE, by reducing the synchronization points about 66%.

VI. CONCLUSION

We have presented a new parallel, optimistic, edge-based
algorithm for the graph coloring problem. We have also
proposed several improvements to the traditional speculative
vertex-based algorithm, and discussed implementation issues
on manycore architectures. Experiments show that the edge-
based method is usually faster on GPU but vertex-based is
usually faster on the Xeon Phi (except for highly irregular
graphs such as RMAT). The number of colors is typically
slightly lower for the edge-based algorithm than the vertex-
based one, but they both produce significantly fewer colors
(typically 4X, but up to 48X) than that of cuSPARSE. Our
results show that it is challenging to develop graph algorithms
for manycore architectures. The best algorithm depends not
only on the architecture, but also on the graph. For applications
using graph coloring, the quality of the coloring is often more
important than the run time. We demonstrated how reducing
the number of colors benefits the solution of linear systems
using a multi-colored Gauss-Seidel preconditioner. Future
work includes studying vertex ordering, which may reduce the
number of colors but at some cost in run time. We conjecture
our algorithms can be extended to other coloring problems,
such as balanced coloring [19] and distance-2 coloring.
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